アジマティクス

ここをこうするとおもしろい

数学デー

フィボナッチ数列とは、ソリティアである

フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足した…

【数学】三人寄れば文殊の知恵が得られることの証明

よく知られた定理として、以下のものがあります。 定理:3人寄れば文殊の知恵 古くから知られている定理ですが、日常的によく使う定理である割にはその証明をきちんと追ったことがある方は少ないのではないかと思います。以下ではこちらの定理の証明を解説…

何なんだろうな。あいじょうって。「10^i」みたいな数を考える

みなさんは、好きな複素数ってありますか?(ただし実数は除く) 「好きな整数」を持ってる人なら少なくないと思います。それこそラッキー7の7とか。自分の誕生日とか。691とか。 「好きな実数」まで広げても、eとかπとかとか、いろいろあるでしょう。 でも…

連分数展開について考えてたらやばい式が出てきてやばい

数学で遊んでると時折やばい式に出くわして、自分で見出しておきながら困惑、あるいは感動してしまうことがあります。今回はそんなお話。 実数の展開 実数には「展開」という概念があります。大雑把に言って、実数の「表示方法」みたいなものです。 円周率π…

対戦パズルゲーム「ゴドマチ」で理解する組み合わせゲーム理論とグランディ数

チェスも、将棋も、囲碁も、コンピューターが人間に勝利して久しいですが、「コンピューター」つまり「計算機」というからには、それぞれのゲームに対して何らかの「計算」をして、一つ一つの手を指しているわけです。 メディアではよくコンピューター将棋な…

無限べき乗a^a^a^...の収束と発散との境目が気になる

一般に、境目は大事です。どこまでが友人で、どこからが恋人なのか、とか。 この記事は「好きな証明」アドベントカレンダー1日目の記事です。 上記の式のことを考えます。今回はは正の実数とします。そのが無限に乗じられているわけです。一見面食らってしま…

日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念

Q:これは何の構造を表しているでしょう? グラフ理論 上の構造のように、頂点(ノードともいいます)の集まりと、2つの頂点をつなぐ辺(エッジともいいます)の集まりでできたもののことを「グラフ」あるいは「ネットワーク」と呼び*1、このような構造を…

結城浩氏が第五回ロマンティック数学ナイトで出した問題に感激した

まだまだ寒さの残る2017年4月1日、渋谷の東京カルチャーカルチャーというイベントホールにおいて第五回「ロマンティック数学ナイト」が開催されました。 株式会社和から主催のこのイベントは、2016年4月に第一回が開催されて以来、2〜4ヶ月程度の間をお…