アジマティクス

ここをこうするとおもしろい

ここをこうするとおもしろい

πとeの最大公約数を求めようとしたらどうなるの、っと

816と663の最大公約数は51です(挨拶)。 みなさんは今日も最大公約数を求めていますか? そうですか〜 いくつか整数があったときに、それらを「共通して割り切る数」が「公約数」であり、その中で最大のものが最大公約数です。 例えば42と30だったら最大公…

フィボナッチ数列とは、ソリティアである

フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足した…

何なんだろうな。あいじょうって。「10のi乗」みたいな数を考える

みなさんは、好きな複素数ってありますか?(ただし実数は除く) 「好きな整数」を持ってる人なら少なくないと思います。それこそラッキー7の7とか。自分の誕生日とか。691とか。 「好きな実数」まで広げても、eとかπとかとか、いろいろあるでしょう。 でも…

連分数展開について考えてたらやばい式が出てきてやばい

数学で遊んでると時折やばい式に出くわして、自分で見出しておきながら困惑、あるいは感動してしまうことがあります。今回はそんなお話。 実数の展開 実数には「展開」という概念があります。大雑把に言って、実数の「表示方法」みたいなものです。 円周率π…

三角関数、何に使うの?→点を回すことができます(すごい)

数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ (@motcho_tw) February 7, 2018 たくさん…

九九ビジュアライゼーション 〜そして九九九へ〜

九九の可視化、流行ってますね。発端はこちらです。なるほど。数が増えていく感がわかりやすいですね。これをきっかけにして全国的に九九の可視化ブームが発生し、次のようなものも現れました。おお! こっちは数が増えていくことも、2つの数をかけたら面積…

それじゃあ任意の自然数をひっくり返す関数でも作って遊ぶか

関数を作るのって、結構楽しいんですよね。作曲や絵を描くのと同じで創作意欲が満たされるというか。 何言ってるかわからないと思うので、実際に関数を作って遊んでるときの私の脳内をトレースしました。

なんか効率のいい素数の覚え方ないかな?

こんにちは。みなさんは、素数をやっていますか? この記事は、素数大富豪アドベントカレンダー2日目の記事です。1日目はにせいさんの「素数大富豪アドベントカレンダー!」です。 www.ajimatics.com 「素数大富豪」というトランプゲームがあります。詳し…

とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ

「アラブ世界では代数学が発展した」とはよく聞くけど、どうも自分の中でしっくりきていなかったというか、要するにあんな難しいものがどうやって始まり発展したのだろう? と気になっていたのですが、最近思うのです。代数学の始まりとは、「イコールの学問…

「平方剰余」を「約数」になぞらえて理解する

突然ですけど、「平方剰余」って概念、わかりにくくないです? なんかググっても「平方剰余の相互法則」のことばっかり出てくるし。その法則がどうやら美しいことはわかったけど、もっと手前のところでつまづいてる人もいるんですよ! なんなんですかあなた…