アジマティクス

ここをこうするとおもしろい

そろそろちゃんと「中国剰余定理」を理解したい!

国名がつく数学用語っていくつかあって、「日本の定理」とか「ポーランド空間」とかあって面白いんですが、なかでも中国剰余定理というのは特に有名です。 で、こいつが数論ではまぁ〜非常によく登場する重要な定理なんですね。 そのステートメントは例えばw…

「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね

「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0…

ラジアンへの変換を「π/180をかける」と覚えるのはやめなさい!

神様。この記事にうさんくさ自己啓発本みたいなタイトルをつけることをお許しください。 数学のつまずきポイントは人それぞれいろいろあると思いますが、高校で出てくる「ラジアン」や「弧度法」とかいうやつが鬼門だったという人、少なくないのではないかと…

【数学】「検査で陽性だった人が実際に病気である確率は数%程度」とかいうやつ、何?

「精度99%の検査で陽性だった人が実際に病気である確率は数%程度」とかいう話、聞いたことがある人もいるかと思います。 「1000人に一人がかかる病気があり、あなたはこの病気かどうかを精度99%で判定できる検査を受けたところ、なんと陽性であった。あなた…

群を見る会

以前、現代数学に欠かせない道具である「群」とはなんなのかについての記事を書きました。 www.ajimatics.com 群とは、解像度の低い順に言って、次のようなものでした。 ・構造の一種 ・「集合」と「演算」で出来ている構造の一種 ・「閉じている」「単位元…

x×y進法だとxじゅうy、x+y進法だとyじゅうxと書けるような数はあるか

この記事は、数学デーアドベントカレンダー10日目の記事です。 東京で「数学デー」という数学好きが集まる場を運営しています。 twitter.com そこで主に行われているのは「誰かが持ってきた(数学とは限らない)話題に対して好き放題議論する」ということで…

「群」って何なの?「同一視」から始める群論

ものを知れば知るほど、いつも歩いている道なんかも解像度が上がって見えてくるわけです。 花の名前や雲の種類、建築の様式などはその代表格でしょう。 同じように、知れば知るほど数学の見え方の解像度が上がる(にも関わらず、高校までの数学ではまったく…

フィボナッチ数列とは、ソリティアである

フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足した…

【数学】三人寄れば文殊の知恵が得られることの証明

よく知られた定理として、以下のものがあります。 定理:3人寄れば文殊の知恵 古くから知られている定理ですが、日常的によく使う定理である割にはその証明をきちんと追ったことがある方は少ないのではないかと思います。以下ではこちらの定理の証明を解説…

【GIF多め】ギャラリー:目で見る複素数

2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそ…

何なんだろうな。あいじょうって。「10のi乗」みたいな数を考える

みなさんは、好きな複素数ってありますか?(ただし実数は除く) 「好きな整数」を持ってる人なら少なくないと思います。それこそラッキー7の7とか。自分の誕生日とか。691とか。 「好きな実数」まで広げても、eとかπとかとか、いろいろあるでしょう。 でも…

連分数展開について考えてたらやばい式が出てきてやばい

数学で遊んでると時折やばい式に出くわして、自分で見出しておきながら困惑、あるいは感動してしまうことがあります。今回はそんなお話。 実数の展開 実数には「展開」という概念があります。大雑把に言って、実数の「表示方法」みたいなものです。 円周率π…

三角関数、何に使うの?→点を回すことができます(すごい)

数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ (@motcho_tw) February 7, 2018 たくさん…

対戦パズルゲーム「ゴドマチ」で理解する組み合わせゲーム理論とグランディ数

チェスも、将棋も、囲碁も、コンピューターが人間に勝利して久しいですが、「コンピューター」つまり「計算機」というからには、それぞれのゲームに対して何らかの「計算」をして、一つ一つの手を指しているわけです。 メディアではよくコンピューター将棋な…

無限べき乗a^a^a^...の収束と発散との境目が気になる

一般に、境目は大事です。どこまでが友人で、どこからが恋人なのか、とか。 この記事は「好きな証明」アドベントカレンダー1日目の記事です。 上記の式のことを考えます。今回はは正の実数とします。そのが無限に乗じられているわけです。一見面食らってしま…