816と663の最大公約数は51です(挨拶)。 みなさんは今日も最大公約数を求めていますか? そうですか〜 いくつか整数があったときに、それらを「共通して割り切る数」が「公約数」であり、その中で最大のものが最大公約数です。 例えば42と30だったら最大公…
国名がつく数学用語っていくつかあって、「日本の定理」とか「ポーランド空間」とかあって面白いんですが、なかでも中国剰余定理というのは特に有名です。 で、こいつが数論ではまぁ〜非常によく登場する重要な定理なんですね。 そのステートメントは例えばw…
「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0…
神様。この記事にうさんくさ自己啓発本みたいなタイトルをつけることをお許しください。 数学のつまずきポイントは人それぞれいろいろあると思いますが、高校で出てくる「ラジアン」や「弧度法」とかいうやつが鬼門だったという人、少なくないのではないかと…
「精度99%の検査で陽性だった人が実際に病気である確率は数%程度」とかいう話、聞いたことがある人もいるかと思います。 「1000人に一人がかかる病気があり、あなたはこの病気かどうかを精度99%で判定できる検査を受けたところ、なんと陽性であった。あなた…
以前、現代数学に欠かせない道具である「群」とはなんなのかについての記事を書きました。 www.ajimatics.com 群とは、解像度の低い順に言って、次のようなものでした。 ・構造の一種 ・「集合」と「演算」で出来ている構造の一種 ・「閉じている」「単位元…
この記事は、数学デーアドベントカレンダー10日目の記事です。 東京で「数学デー」という数学好きが集まる場を運営しています。 twitter.com そこで主に行われているのは「誰かが持ってきた(数学とは限らない)話題に対して好き放題議論する」ということで…
ものを知れば知るほど、いつも歩いている道なんかも解像度が上がって見えてくるわけです。 花の名前や雲の種類、建築の様式などはその代表格でしょう。 同じように、知れば知るほど数学の見え方の解像度が上がる(にも関わらず、高校までの数学ではまったく…
フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足した…
よく知られた定理として、以下のものがあります。 定理:3人寄れば文殊の知恵 古くから知られている定理ですが、日常的によく使う定理である割にはその証明をきちんと追ったことがある方は少ないのではないかと思います。以下ではこちらの定理の証明を解説…
2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそ…
みなさんは、好きな複素数ってありますか?(ただし実数は除く) 「好きな整数」を持ってる人なら少なくないと思います。それこそラッキー7の7とか。自分の誕生日とか。691とか。 「好きな実数」まで広げても、eとかπとかとか、いろいろあるでしょう。 でも…
数学で遊んでると時折やばい式に出くわして、自分で見出しておきながら困惑、あるいは感動してしまうことがあります。今回はそんなお話。 実数の展開 実数には「展開」という概念があります。大雑把に言って、実数の「表示方法」みたいなものです。 円周率π…
数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ (@motcho_tw) February 7, 2018 たくさん…
チェスも、将棋も、囲碁も、コンピューターが人間に勝利して久しいですが、「コンピューター」つまり「計算機」というからには、それぞれのゲームに対して何らかの「計算」をして、一つ一つの手を指しているわけです。 メディアではよくコンピューター将棋な…